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INTRODUCTION

Lxcited states of interacting systems, that are bound in the ground state
only by van der Waals forces, can interact to form strongly bound species. This
is found even for systems in which only one of the fragments is excited, and is
exemplificd by the excimer states He-He*, Ar-Ar', and H,-H.". Here the asterisk
denotes the first exeited state of the same spin symmetry as the ground state.
Interest in the latter system has inereased recently with the study of Nicolaides,
Theodorakopoulos, and Petsalakis (NTP) of the Hy(X 'S) Hy(B 'Y system
beeanse of the jonie character of the B state which these authors label at 1.00,,.
where charge transfer occurs, a maximum ionicity excited states (NIES): see Fig.

I for the correlation diagram. This state is of special interest because of its

strong electrostatic binding.

A model' 3 based on MIES properties suggests that bound excited states of
polyatomic systems can be formed in regions characterized by an avoided crossing
with the ground state, if one of the interacting molecules can exist in a MIES.
The description for H, H,'. where H, denotes Ho(B 'E,') is one in which a posi-
tive ion complex Hy' is formed, and interacts in its ground state equilibrium
geometry (cquilateral triangle with r = 1.65a,) with H . The MIES geometry
corresponding to H* H™ for the parent Hy(B 'S ") is the charge transfer region at
4.0a5. The mechanism supported by NTP with Cl computations is one of Hy',
which is electron deficient in the center of the triangle, interacting with H at a

distance of ronghly L.0a, ahove the plane of the Hy' triangle,
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. . . . *
During the contract period studies of the 11, -1, system have been pursued

in this lnboratory using the lixed-node quantum Monte Carlo (FNQMC) method.

A brief introduction to the method is presented and followed by o deseription of

FNQMC and other calculations of the subject system.

QUANTUM MONTE CARILO

Monte Carlo approaches to solving problems with many degrees of freedom
are a class of statistical methods having in common the generation of “random™
numbers.  In the past few years, Monte Carlo approaches have scen increased
application in a number of diverse lields. What we mean here by quantum
Monte Carlo (QMC) is a Monte Carlo procedure which solves the Sehrodinger
cquation. This is to be distinguished from so-called variational NMonte Carlo, in

which one obtains expectation values for a grven trial wave function.

This ability to stochastically solve the Schrodinger equation provides an
alternative to conventional techniques of quantum chemistry. Farly work? has
shown that highly accurate total energies and correlation energies can be
obtained by QNIC. In fact, in a procedurally simple manner, accuracies exceeding
those of the best alb initio conliguration interaction caleulations have been

obtained.

The essenee of the procedure is to simulate a quantum system by allowing it
(and an ensemble of differently prepared systems) to evolve under the time-
dependent. Sehrodinger equation in imaginary time. Pxeited <tates of the <ame

syimetry as a lower state ean also be computed with the method.
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By writing the imaginary-time Sehrodinger equation with o <shift in the zero
of energy as g
!

JP(IR A 5 v v 0
——(;—) = Dy Y(R.) + [ V(R)W(RT). (1) )

e 04
3 . - o . "

we see that it may be interpreted as a generalized diffusion equation. The tirdt
terim on the right-hand side is the ordinary ditfusion term, while the sceond term y
»
. L) . 8 . .
is a position-dependent rate (or branching) term. For an electronic system. "
(]

P . . . . . .
D = W/2im, R is the three-N dimensional coordinate vector of the N eleetrons, °
and V(R) is the Coulomb potential. Sinee diffusion is the continumum limit of « :
‘3
L
. 3 . . . ; <)
random walk, one may simulate Eq. (1) with the function ¥ {(note, not W=} as the ]
®
density of “walks™. The walks undergo an exponential birth and death as iven !
F
-
by the rate tern,

‘I
I'he steady-state solution to Bq. (1) is the time-independent Sehrddinger »
equation. Thus we have Y(R.t)—¢(R), where ¢ is an energy cigenstate. The \

value of Fpoat which ihe population of walkers is asvimptotically constant gives
1]
the encrgy eigenvalue. Farly caleubntions emploving Feaq.o (1) in this wayv were )
done by Anderson on a number of one- ta four-clectron systems.” ;
D
I order to treat svstems Targer than two eleetrons, the Fermi nature of ;
electrons must be takew into account. The antisvimetsy o the cigenfunction C

implies that W must change sign: however, o density (e of walkers) eannot he
.
negative. The method which imposes antisymmetry, amd ot the same time pro- i
()

vides eflicient sampling (thereby rediicing the statistieal “noise™ ) i~ importane
sampling with an antisviometeie teiad funetion W The zeroes (nodes) of e !
. . . . . « . . *
become absorbing bowndaries for the ditheion proee . which aedntain. the »

VW v v,
'\vf‘.f\-

Y




antisvmmetry, The wdditional boundary condition that ¥ vanish ot the nodes of
Yo is the lixed-node approximation. The magnitude of the crror thus introdueed
depends on the securney of the nodes of W (R), and vanishes as Wy approaches
the true eigenfunction.  To the extent that W is o good approximation of the
wave funetion, the true cigenfunction s almost certainly quite small near the
nodes ol oo Thus one expeets the fixed-node error to be small for reasonable
choices of Y.

To tmplement importance sampling and the fixed-node spproximation, q.
(1) is multiplied on both sides by W, and rewritten in terms of the new probabil-
ity density f(R,t) = W(R)W(R,1). The resultant equation for f(R.) may be writ-

Len
of
13/

The local energy 15 (R), and the “quantum foree”™ Fo(R) are simple funetions of

= DY+ B (R D[ (1) (2)

Vo given by

I (R) = W (R)/V(R), (30)

and
FO(R) = 20¥(R)/V(R). (3h)
Faguation (2), like Fq. (1) is a generalized diffusion equation. though now with the

addition of a drilt term due to the presence of 19,

In order to perform the random walk implied by B (2) we use o short-time
approximation to the Green's funetion whicl is used (o evolve f(IRa) ~H(R" 14 7).
This evolution process i~ iterated to [arge 1. The Green's Tunetion hecomes exnet

in the it of vanishine time-tep size, 1.
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Figure 2. MIES coordinate system (assuming Cqy svmmet r\’).: R is
the distance trom Hy to plane of HHMHG cquitateral trianple of side r.
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Geometries and energies for the approach of H,(B) to H,(X)

step R’ L, L, Ly+) Lo(-) D energy lowing
I 5-2.2 1.40 2.43 1.215 1.215 0.0 -0.91
I 2.2 1.40 2.43 1.215-1.93 1.215-0.5 0.715 -0.20
m 2.2 1.60 2.63 1.93-2.13 0.5 0.865 -0.20
IV 2.2-1.75 1.60 2.63 2.14 0.5 0.885 -0.20
V  1.751.55 1.80 2.73 2.23 0.5 0.915 -0.46
VI 1.55 1.60 3.13 2.23-2.63 0.5 1.115 -0.69
vl 1.50 1.70 3.23 2.63-2.73 0.5 1.185 -0.11

TOTAL E‘NERGY LOWERING FOR THE SEVEN STEPS IS 8.75
ev.

¢ Distances in a.u.; energies in ev.

R’ - distance between the midpoint of Hy(X) snd the point where Hy(B) meets
the H,(X) plane.

L, - length of Hy(X).
L, - length of Hy(B).
L,(+) - length of Hy(B) above Hy{X) plane.

L,y(-) - length of Hy(B) below H,(X) plane.
D - magpitude of shift of Hy(B) midpoint ( above (+)/below(-) ) plane of H,(X).
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asymptotic region to the neighborhood of the H, MIES configuration. The table
also contains the energy lowering associated with the steps that are plotted in
Fig. 6. It is noteworthy that no energy barrier is encountered along this path.
Further, Fig. 7 show that when H(B) is displaced from bisecting Hy(X) in step II,
charge transfer immediately occurs. (Similar behavior has been found for the

related Hy(B) + He system in an independent study by WAL.)

FNQMC STUDY OF THE GROUND-STATE PYRAMIDAL

STRUCTURE FOR C;, SYMMETRY

FNQMC calculations using the MCSCF trial functions discussed above yield
~ 0.6-1.0 eV energy lowering compared to the results of NTP and are presented
in Fig. 8. Such a large change was not anticipated and so it was important to
test the validity of this finding. To this end a configuration interaction calcula-
tion including all single and double excitations (SDCI) using the MCSCF" pilot
study basis set was carried out at R = 3.4 a.u. The energy was 0.32 eV lower
than NTP’s value and is consistent with the improvement expected based on stu-
dies of other systems. The FNQMC results of Fig. 8 obtained using a new trial
function optimization algorithm, mentioned in the next section, are generally an

improvement over those of Fig. 8 obtained using MCSCF trial functions.

FNQMC STUDY OF THE EXCITED STATE

These calculations provide the severest test of the FNQMC approach
because of the lack of knowledge of the accuracy of the excited state trial func-

tion needed to provide a nodal description that assures orthogonality to the
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ground state of the =ame (A" ) syimmetry (C)). MOSCE ealeulations elose to the
avoided erossing sullered from root flipping. Despite the use of familiar MCSCEF
strategies to address the problem, it could not be resalved.

The MCSCE  convergence problem had been encountered earlier for
He + HL(B) but resolved by the use of an ab initio CI method. Interest here in

using the FNQMC method led us to develop a method for trial function construe-

- -

tion® that avoids the MCUSCF procedure. The approach amounts to the introduc-
tion of parameter optimization in the random walk process. Using group theory,

a projection operator is constructed and used to constrain the wave function to

- -

have the symmetry properties of the state of interest., This method has heey
employced in the present effort to generate the A-state FNQMC results, denoted
A(IFNQMC), of Fig. 8. Calculations using this method are in progress to com-

plete the E-state curve, labeled I{(FNQMC}, in Fig. 8 for 3.8 < R < 6.0 a.u.

. SA-MCSCF STUDY OF DISTORTED GEOMETRIES

Caleulations have been carried out using the state averaged(SA}MCSCE

incethod to develop trial functions for a QMC study of the topography of the

: ground- and excited-state potential energy surface (pes) in the region of the syin-
metric geometry of the MIES determined by NTP. Figure 9 presents the coordi-

| nate system, Fig. 10 provides perspective views, and Fig. 11 (R = 4.0 a.u.) and
Fig. 12 (R = 3.8 a.u.) show contour maps of the pes in the MIES region. Fig-
) ures 11 and 12 show that the ground state has a saddle point at smaller R than
¥ the minimum of the excited state and that both features correspond to an isos-

celes triangle base for the MILS system. Further geometry optimization is

15
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Fipure 9. MIES coordinate svstem nsed tor geometry variation., ®
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MANENAAERLARAS.

explored in Pigs 13 which plors portentinl enerey as oo function of Jd the di-pdae

ment of Hovowards the Lo of the T isooobosarrangement. “The minimomn for

the excited <tate is found for d = 0.1 a.n.

|

’ NONADIABATIC COUPLING

}

t The stability of the NIES system is dependent oo nonadiabatie conpdine
|

(NACH to the ground state, Abthough the focus of this study is elracterization
of the region of pes of the NMIES, the need to aseertzin fiest the stalility of th
excited system is u high pricrity here beeause of the eflort associanted witle the
trial function optimization method and the expense of QNIC ealeulations with
small statistieal varianees. Tooeadeulate the NAC moreis elements we 1ok
advantage of the simplications made possible by the nse of normal mode distor-
tions (Fieo L) from the hichly symmetrie C o svavmetry, Ounre ealeulation show

that nuclear displacements associated with modes Qp and Q. lead to strong con-

pling hetween the A and B <iatess Relatively weaker coupling is found in Q, and

Q.. The two totally symmetric modes (Q nnd Q) give no contribution,

The size of the NAC matriy elements conneeting the A" state to the Foctate
cotwponents (Cyo notation is used here toindicate parentaod are tabulared i,
e 15 for the minimum energy geometry of the A state. These pesalis estab i 4
that there is strong coupling Letween these states. Further computational <tudy
is needed to contirm these predictions and to estimate relinbly the exeite ] e

lifetime.

i OO AT AL AN T



......

Coupling matrix clements D! by a finite dilferenee

mcthod (extrapolated from 6Q =

0.002, 0.001, and

0.0005).

<E, | A" > <E, A" >
Q, -2.0112(64) 0.0015(0)
Q, 0.0017(0) 2.0127(98)
Q3 0.0000 0.0000
Q, -0.3901(389) -0.0010(3)
Q; -0.0039(13) -0.3113(196)
Qg 0.0000 0.0000

19 and [, are doubly degencrate states where IS, is sym-

metric and 19, is antisymmetric.

Fipure 15, €l contribution to coupling matrix elements for no wrmal mode

dls[)l"l((mtl)f see Fig. 14.
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